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Abstract. The criticality of the anisotropic k ing  model on a three-node hierarchical lattice 
is investigated by an exact renormalisation group transformation. The phase diagram 
exhibits three physically different phases, namely a paramagnetic one and surface and bulk 
ferromagnetic ones. When I ,  # J2 # J 3 ,  the system orders in the direction with the largest 
I before it orders in the bulk. The bulk para-ferromagnetic transition is separated into 
three different universality classes, i.e. one isotropic and two anisotropic. This phenomenon, 
which is quite different from that on anisotropic Bravais lattices and seems analogous to 
that of a semi-infinite king model, is analysed. 

1. Introduction 

In recent years, much interest has been devoted to the study of phase transitions on 
hierarchical lattices (Berker and Ostlund 1979, Kaufman and Griffiths 1981, 1982, Hu 
1985). Hierarchical lattices serve as a convenient theoretical laboratory where new 
ideas can be tested and developed, because of the performance of exact renormalisation 
group transformations, and provide insight into low-symmetry physical systems such 
as random magnets, interfaces, etc. Because of their highly inhomogeneous nature, it 
is very interesting to know the difference between critical phenomena on hierarchical 
and Bravais lattices. The work of Hu (1985) shows that critical properties on hierar- 
chical lattices depend very much on the detailed structure of the lattice (an extended 
universality principle for these lattices may be refuted) which is quite different from 
the case of Bravais lattices where universality depends only on dimensionality and 
symmetry. 

The anisotropic king model has been a subject of intense study in the past few 
years. Exact solutions of the model on the two-dimensional lattice (Onsager 1944; see 
also McCoy and Wu 1973) show that the critical temperatures decrease as the ratio 
R = J x /  Jy decreases while the critical exponents remain identical for all finite non-zero 
values of R. Within a renormalisation group framework, it has been conjectured that 
spatial anisotropy is a marginal operator and that the critical behaviour should be 
described by a line of fixed points with critical exponents identical to those of the 
isotropic system (Bruce 1974, Aharony and Fisher 1980). What influence does spatial 
anisotropy have on critical phenomena in the low-symmetry lattices such as a hierar- 
chical lattice and does it play the same role as on Bravais lattices? In the present 
paper, an anisotropic Ising model with nearest-neighbour interactions is investigated 
on a three-node hierarchical lattice which is introduced here. Our effort is dedicated 
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to the analysis of the phase diagram, the various critical universality classes and the 
changes in critical phenomena as compared with anisotropic Bravais lattices, which 
might answer the above questions. 

The outline of the paper is as follows. In Q 2, the idea of multi-node hierarchical 
lattices is introduced and the construction of a three-node example is described. 0 3 
is devoted to the model and formalism and 0 4 to the results. Finally, the conclusions 
are given in (5 5 .  

2. Geometry 

Hierarchical lattices are iteratively constructed by decorating an object with a basic 
cell, called a generator. Each generator of a bond studied so far has two nodes between 
which the decoration takes place. In these lattices, anisotropy of the lattice will vanish 
when the renormalisation group transformation takes place once. To study the 
anisotropic Ising model, we introduce the idea of multi-node hierarchical lattices. For 
instance, a three-node hierarchical lattice can be constructed by the generator of the 
two-dimensional Sierpinski gasket in a hierarchical way (see figure 1). When the length 
scale is changed by a factor 2, six new units are created. Therefore its fractal dimension- 
ality (Mandelbrot 1977, 1982) is D = In 6/ln 2 = 2.5849 . . . . The lattice is also a three- 
node hierarchical lattice (we call it L2 for short) with the same fractal dimensionality 
as the orginal one ( L , )  when the bonds in any one of the directions are absent and it 
is reduced to the collections of parallel two-node lattices of all sizes from a single site 
to a maximum when the bonds in any two directions are absent. Those two-node 
hierarchical lattices can be considered as the surfaces of the three-node one. 

Figure 1. The initial triangle and the first two construction stages for the three-node 
hierarchical lattice. Only one half i s  shown in the second stage for simplicity and clearness; 
the whole should be made of two by connection at the points A, B and C (-, J , ;  ---, 
J . - . -  J 

2 1  3 3 ) .  

3. Model and formalism 

The anisotropic king m o d  can be described by the Hamiltonian 

H = - J ,  C S,S, - JZ C S,Sk - 53 C S,S, (1) ', i k  ,I 

where J ,  , J2  and J3 are respectively the nearest-neighbour exchange interactions along 
the three different directions on the three-node hierarchical lattice. The RG equations 
are obtained by summing over the internal spins of all the triangles of linear size 2. 
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The rescaling factor is b = 2. The resulting recursion relations for K, = J , /  kT ( i  = 1 ,2  
and 3) are 

K - 1  (" I -21n  - cosh( 2 K , ) 
B cosh(2K2) cosh(2K3) 

K - 1  (" cosh(2K2) 
2-21n - 

B cosh(2K,) cosh(2K3) 

K -1 (" cosh(2 K,) 
3-21n - 

B cosh(2KI) cosh(2K3) 

with 

A = exp( K, + K,+ K3) cosh(2( K, + K 2 +  K,)) 

+exp(K,-  K2-K3)cosh(2(K,-K2-K,)) 

+exp(-K, - K , +  K3) cosh(2(K,+ K2- K,)) 

+ exp( - K, + K2 - K3) cosh(2( K,  - K2 + K,)) 

B = exp( K ,  + K2+ K,) + exp( K, - K, - K 3 )  + exp( - K, - K2 + K3) 

+ exp(-K, + K2- K3) 

which completely determine the RG recurrence in the parameter space. 

4. Results 

The RG flow diagram is shown in figure 2, only the part for t 3Z  f 2  2 t l  ( t i  = exp(-Ki), 
i = 1,2 and 3)  being indicated (the rest can be obtained easily in terms of the symmetry). 

Figure 2. Flow diagram of the anisotropic Ising model on the three-node hierarchical lattice 
in I,, t 2 ,  f 3  space. Only the part satisfying 1,s t ,  is shown because of the symmetry. 
Trivial (stable), critical (semistable) and the multicritical (unstable) fixed points are denoted 
by a, 0 and 0, respectively. The paramagnetic and two ferromagnetic (surface and bulk) 
phases are separated by the C-S-HM and C-D-B-HM critical surfaces. Typical flowlines 
on these surfaces are shown. 
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It exhibits 
(i) three different phases which are respectively characterised by three fully stable 

points at ( t , ,  t 2 ,  t , )  = (1, 1, 1) (paramagnetic phase, P), (0, 1 , l )  (surface ferromagnetic 
phase, SF) and (0, 0,O) (bulk ferromagnetic phase, BF); 

(ii) a multicritical line in which parts which start at a high-order multicritical point 
(fully unstable fixed point) denoted H M  and at point c (the intersection point of critical 
surface with the surface t ,  = 1) and end at the multicritical point (semistable fixed 
point) M ;  

(iii) three semistable (or critical) fixed points denoted, respectively, s corresponding 
to the infinite surface (two-node lattice), M for the bulk magnetic ordering and B for 
the bulk ordering after the surface has been ordered; and 

(iv) four universality classes, the two-node hierarchical lattice (surface) one which 
occurs for J ,  > J2 3 J3 with the critical temperature determined by the C-S-HM critical 
surface and three-node hierarchical lattice (bulk) ones which occur when J ,  = J2 = J 3 ,  
J ,  = J 2  > J3 and J ,  > J2 > J3 with the critical temperature determined by the fixed point 
H M ,  the C-M-HM critical line and the C-D-B-HM critical surface, respectively. 

The locations of critical points and their exponents, which are accurate enough 
numerically to reveal the differences, can be found in table 1. The phase boundaries 
and a few representative flows for two subspaces which are closed under the flows are 
illustrated in figure 3. In the ( t l ,  t ( =  t 2  = t , ) )  space, the critical lines separating the P, 
SF and BF phases are indicated (figure 3 ( u ) ) .  When t l  > t ( J ,  < J ) ,  only an anisotropic 
bulk para-ferromagnetic transition, which does not belong to the isotropic universality 
class, is possible; when t ,  < t (5, > J ) ,  the surface orders before the bulk does and the 
critical exponents of the bulk transition are changed. The isotropic bulk para-ferromag- 
netic transition takes place when t ,  = t. The ( t 2 ,  f 3 )  space with t l  = 0 (J1 = CO) indicates 

Table 1.  Critical points and exponents for the ~ N H  model. 

( [ I ,  ( 2 3  1 3 )  (YI 3 Y 2 ,  Y 3 )  (41 1 4 2 )  

Surface transition (0.543 69, 1, 1) (0.747 24, , ) 
Bulk transition (0,0.868 84,0368 84) (0.839 25,, j 

High-order (0.746 12,0.746 12,0.746 12) (1.077 30, 0.075 39, 0.075 39) (0.070, 0.070) 
Multicritical point (0.718 42,0.71842,0.802 02) (1.07049,0.212 45, -0.0803) (0.198, -0.075) 

multicritical point 

S +"Lap BF 10) t B 1  SF 

Figure 3. The phase boundaries and a 
f, = f, ( J z  = J 3 )  and ( b )  f, = 0 (Jl  = m) 

i 61 
few representative flows for two subspaces with 
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the critical line separating the P and BF phases, while the surface in the direction with 
the largest J (here J is J1) has already ordered. 

5. Conclusion 

In  the present paper, we have introduced and analysed an anisotropic Ising model on 
a novel three-node hierarchical lattice. The phase diagram is obtained via an exact 
decimation transformation method. The results of our study reveal some interesting 
features. The bulk para-ferromagnetic transition is separated into three different 
universality classes instead of one as in the case of Bravais lattices. As in the case of 
two-node hierarchical lattices (Hu 1985), Ising models with only one kind of exchange 
interaction on the L1 and L2 lattices do not belong to the same universality classes, 
although they have the same fractal and spectral dimensions (Rammal et a1 1984), 
which may be due to the important difference that the L2 lattices possess only reflection 
symmetry instead of the threefold rotation symmetry of the L ,  lattice. Another interest- 
ing feature that appears is that the infinite (maximum) two-node hierarchical lattice 
(surface) with the largest J orders before the three-node one (bulk) does even though 
the J in the other two directions is not zero. In view of this, the critical behaviour of 
the three-node hierarchical ( 3 ~ ~ 1  model is rather more analogous to that of a semi- 
infinite king (si11 model than to that of an anisotropic Ising model on any standard 
lattice; this can be seen from the following correspondences between (multi) critical 
points of the ~ N H  phase diagram in the subspace t 2  = t3 (figure 3 ( a ) )  and of the SII  

phase diagram (see e.g. Nakanishi and Fisher (1982) for a summary of results for the 
S I I  model): 

3 N H :  M H M  S B 

SI]: Ordinary Special Surface Extraordinary 

The anisotropic crossover exponent at H M  (see table 1) could be compared with the 
surface enhancement exponent at the special transition 41 = ++ O( E ) ,  E = 4 - d. 
However, the largest eigenvalues at fixed points M ,  H M  and B are different from each 
other and those at fixed points 0, S P  and E are the same. Namely the bulk para- 
ferromagnetic transition of the ~ N H  model is separated into three different universality 
classes instead of one as in the S I I  model. Despite some artificial and unphysical 
characters of the ~ N H  model, we feel that its rich phase structure may provide some 
insights into low-symmetry systems. 
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